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1. INTRODUCTION

Nanotechnology has become a key word of public interest,
since people realized the social and economic power of nano-
technology development. Nanotechnology has already become
part of our daily life, and it will have an as yet unknown
technological impact because it concerns all aspects of human
life from novel building materials to electronics, cosmetics,
pharmaceutics, and medicine.1 In recent years, engineered
nanoparticles started to become themost important components
in nanotechnology. The International Organization for Standardiza-
tion (ISO) has provided specific definitions in their recent
document entitled “Nanotechnologies—Terminology and defi-
nitions for nanoobjects—Nanoparticle, nanofibre and nano-
plate”. As the basis of this review, the following definitions for
a nanoparticle (NP) and a nano-object will be used. A nanoma-
terial is a material with one, two, or three external dimensions in
the nanoscale (1�100 nm), whereas a nanoparticle is defined as a
material with all three external dimensions in the nanoscale
(ISO/TS: 27687:2008). The current choice of available nano-
particles ranges from relatively simple single titania nanoparti-
cles, which are used in modern sunscreens, to highly complex
nanoparticle systems such as coated and multiply derivatized
superparamagnetic iron oxide nanoparticles (SPIONs) for drug
delivery systems.2�5 All these artificial and engineered nanopar-
ticles have one thing in common: their chemical, physical, and
biological characteristics differ considerably from the bulk ma-
terial properties. For example, the ferromagnetic iron oxides such
as maghemite and magnetite lose their permanent magnetization

if they are <30 nm in diameter.6 Therefore, these materials can be
considered as entirely new materials whose impact on humans
and environment is not yet known in detail.

U.S. and European governments are promoting study pro-
grams on the impact of nanotechnology. The key research report
“Nanoscience and nanotechnologies: Opportunities and uncer-
tainties”was published by the Royal Society & Royal Academy of
Engineering of Britain in 2004. More recently the Swiss Federal
Office of Health, together with the Swiss Federal Office of Environ-
ment, has published an action plan, “Synthetic Nanomaterials”.7

This action plan enables both researchers and industrial users of
nanoparticles to assess the potential risks of nanoparticles. A lot
of research is currently ongoing to use the novel characteristics of
nanoparticles for pharmaceutical applications,8,9 especially for
targeted drug delivery,10,11 biomedical imaging,12 or biosensing.13

However, biomedical applications require a detailed understand-
ing of interactions between NPs and biological systems. How
these particles react with living cells, proteins, hormones, or
immune factors is fundamental to the long-term clinical and
commercial viability of such nanoscaled products. More signifi-
cant is how nanoparticles react following biodegradation within
the body—and specifically, whether the particles (or their byprod-
ucts) are subject to bioaccumulation within cells or organs,
inducing intracellular changes or inflammatory responses. Nano-
particles for biomedical applications have undergone numer-
ous studies in vitro and in vivo with varying results.14,15 However,
this is exceptional and data are only available for very specific
particles of specific size with well-characterized and defined
surfaces if these compounds are to be used in biomedicine. In
other words, extensive studies of the safety of nanoparticles are
linked to specific products and are performed by the manufac-
turers of these products as a condition of them being sold. These
regulatory bodies are already in place for most industries
especially for the pharmaceutical industry. In this field we can
profit from the existing severe rules for the approval of new
pharmaceuticals. The European Medicines Agency (EMA) has
declared regarding guidance for the application of nanomedicine:
“Specific guidance on quality, toxicology, clinical development
and monitoring aspects may be developed in the future, once
sufficient scientific experience has been gained for specifically
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identified sub-technologies within the field of nanomedicines”.16

This means that medical device manufacturers are obliged to
carry out an assessment of the risks as defined in the Medical
Devices Directive. In particular, they propose a tentative classi-
fication rule for “free” nanoparticles in medical devices, based on
the principle that “all devices incorporating or consisting of
particles, components or devices at the nanoscale are in Class III
unless they are encapsulated or bound in such a manner that they
cannot be released to the patient’s organs, tissues, cells or
molecules”. From this it is clear that there is no universal
“nanoparticle” to fit all the cases; each nanomaterial must be
treated individually when health risks are expected. There is no
systematic study available so far; toxicological data are difficult to
compare because the parameters, investigated cells or animals,
and particles in each of the published studies differ substantially.
However, the scientific community agrees that the size, the
surface (charge), and the colloidal behavior including unspecific
protein adsorption play a crucial role.17,18

Many applications and investigations use nanoparticles in
colloidal suspensions. By tailoring interactions between colloidal
particles, one can design stable fluids, gels, or colloidal crystals.
Long-range, attractive van der Waals forces are ubiquitous and
must be balanced by Coulombic, steric, or other repulsive
interactions to engineer the desired degree of colloidal stability.19

The colloidal behavior of nanoparticles in different cell media or
body fluids is almost never considered or related to particle�cell
interactions. It has been shown that submicrometer polymeric
particles coagulate in the cell medium, whereas colloidal stability
in aqueous solution was ensured for several weeks.20 A recent
study by Limbach et al.21 on the in vitro agglomeration of
nanoparticles at low concentrations has revealed the need for
thorough particle size measurements and colloidal stability
investigations.

In recent years, several studies showed that different test
systems exhibit weak points concerning the analytics of nano-
particles and nanomaterials. Interactions of nanosized materials
with the analytical system itself, inappropriate choice of reaction
conditions, or insufficient pretreatment of the particle dispersion
lead to erroneous results or artifacts, which are often very hard to
rebut.22 For example, nanomaterials have been shown to interact
or react with certain dyes of a toxicity assay or tightly bind to the
analyte molecules.23,24 Therefore, the application of photometric
methods is fairly restricted. Accordingly, it could be shown that
the currently used biological/toxicological assays and even exist-
ing Organisation for Economic Co-operation and Development
(OECD)-guidelines could be inadequate and that their use is doubt-
ful. For example, the lack of a nanoparticle-type positive control
questions the suitability of tests to identify genotoxicity of nanoma-
terials. Although several genetic toxicology tests have been validated
for chemicals according to the OECD test guidelines, the rele-
vance of these assays for nanoparticulate materials remains to be
determined.25 Several erroneousmeasurements have been revealed,
which raised the discussion on which tests are applicable at all.

A few years ago, an international group requested a strategy
to overcome such an insufficiency in experimental testing.
Andrew Maynard and his colleagues26 clearly demanded to
develop and validate methods to evaluate the toxicity of
engineered nanomaterials within the next 5�15 years (from
2006 on). “The first challenge in this context is to reach
international agreement on a battery of in vitro screening tests
for human and environmental toxicity within the first 2 years,
and to validate these tests within the following 5 years.”26

This statement is based on the situation regarding the toxicity
tests of engineered nanoparticles for technical applications. It is
evident that such a statement is also true for nanoparticles
designed for medical applications. However, the first step is yet
to be completed.

2. DEVELOPMENT AND CHARACTERIZATION OF
SPIONS FOR BIOMEDICAL APPLICATIONS

SPIONs offer many applications in biomedicine such as
magnetic resonance imaging (MRI) for contrast enhancement,
drug delivery, stem cell tracking, heat source in magnetic fluid
hyperthermi,a or magnetic separation technologies (e.g., rapid
DNA sequencing) and ultrasensitive diagnostic assays.27�30

Because of their special properties, these particles offer a variety
of advantages compared to other tools: (i) the controllable sizes
ranging from∼3 to several hundred nanometers (in beads), and
(ii) the tailor-made surface coating, which can be adapted in a
way so that the particles can selectively bind to a defined biologic
entity (such as cells or degraded extracellular matrix molecules)
or deliver molecules and drugs to specific sites. In addition, their
outstandingmagnetic propertiesmakes them versatile candidates
formolecular resonance imaging (MRI) or hyperthermia.31Most
commercially available particles or beads with modified surfaces
show sizes. 150 nm and are used for in vitro separation but are
not designed for selective adsorption/uptake into cells or tissue.
On the other hand, very small particles (diameter < 30 nm) are
commercially available, but only with a limited number of
functional surfaces, and were developed for liver and recently
also for imaging metastases in lymph nodes by MRI. MRI
contrast agents were first introduced in the mid-1980s; there
are currently numerous SPION compounds already FDA-
approved for use in the clinic as well as other undergoing clinical
trials.32 The number of SPION-related publications has in-
creased strongly over the years.33 Many investigations are related
to synthesis, characterization, and surface properties of the
magnetic nanoparticles. Biological issues have been increasingly
addressed in the last few years, and toxicity of SPIONs in medical
applications has clearly become an issue.34 Although information
about the toxicity of nanoparticles and specifically SPIONs
continues to increase, a significant knowledge gap exists on a
complete toxicological profile of these promising nanoparticles
proposed for safe future use in many aspects of biomedical
engineering. Without the data, risk assessment or regulation for
safety of the materials suffer significantly.

This review presents a broad overview of currently available in
vitro and in vivo toxicity data. The reader will realize that the
toxicity data obtained vary significantly depending on size, size
distribution, surface (including coating), and subsequent surface
derivatization.

3. SPIONS IN IN VITRO ASSAYS

To obtain reliable and reproducible data from in vitro tests, it
is of utmost importance to establish adequate and reproducible
analytical environments in terms of, for example, the choice of
cells, growing conditions, or sample preparation assay proce-
dures. Determination of the possible toxicity of SPIONs is
usually initially determined using in vitro toxicity tests as also
described for other nanoparticles,35 namely, the viability of cells,
i.e., cytotoxicity, oxidative stress, inflammatory reactions, and
genotoxicity.36
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If the in vitro toxicity tests show only minor or no effects in the
concentrations to be used, then the samples will be forwarded to do
some in vivo (animal) tests in a relevant (similar to human applica-
tion)model. If that looks good, then theproduct shouldbe registered
with the FDA for approval for the first clinical human trials.

Nanomaterials often impact on the metabolic activity of cells,
membrane integrity of the cells, cell apoptosis, and proliferation.
The most prominent assays to determine the predetermined
impacts are summarized in Figure 1.

Most of the early studies were done on dextran-coated
SPIONs.37 These first studies were conducted to understand
the mechanism of nanoparticle cellular uptake;37�39 from the
results that were obtained, one could conclude that a variety of
cells can be efficiently labeled with SPIONs by simple incubation
and intracellular labeling may be used for MR imaging of in vivo
cell tracking.

In 1996, Mueller et al.40 reported that some SPIONs showed
significant toxicity. Several years later, Berry et al.41,42 showed
that uncoated or dextran-coated SPIONs could cause varying
degrees of cell death and were able to induce vacuole formation

and clear disruptions in the skeleton of dermal fibroblasts. These
observations were reconfirmed by Gupta and co-workers,32,43,44

who clearly demonstrated cytotoxicity and cytoskeletal disrup-
tion by bare SPIONs. In other studies, they tried to prevent the
apparent endocytosis-mediated cytotoxic effects by coating
SPIONs with different proteins such as lactoferrin and cerulo-
plasmin, and they showed that the cell response could be directly
modulated by the choice of coating.44�46

van den Bos et al.47 presented that Feridex, a dextran-coated
SPION, could demonstrate significant toxic effects upon macro-
phage exposure, including decreased proliferation and cell death.
Further investigations revealed that the cause of toxicity was
directly attributable to oxidative stress and the generation of free
radicals. Similarly, in a study specifically evaluating the effect that
magnetic labeling might have upon cells, Stroh et al.48 confirmed
that the large amounts of citrate-coated SPIONs in cells resulted
in a significant increase in protein oxidation and oxidative stress.
They showed that iron was the source of reactive oxygen species
(ROS) by showing a dramatic reduction in these levels via
coadministration of an iron chelator.

Figure 1. (a) Prominent in vitro assays that are used to probe the impact of nanomaterials on cells; (b) transmission electron micrograph of a human
liver cell line (HepG2) showing the mechanism of action of representative cell assays (i.e., MTT, checking mitochondria activity; PI, DNA staining;
BrdU, DNA replication staining; LDH, membrane integrity assessment). From unpublished data by Mahmoudi et al.
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Multiple studies of different SPIONs, which were previously
considered innocuous to humans, were compared with nano-
particles of the well-known carcinogen asbestos.49�51 Thanks to
transmission electron microscopy (TEM) and toxicity assays,
Soto and co-workers noted that murine macrophage cells
exposed to bare SPIONs showed cytoxicities nearing 90% of
the asbestos-treated cultures.49�51 Similarly, in a study by
Brunner et al.,49 SPIONs showed a cell-specific response, clearly
showing toxicity equal to that of asbestos toward human
mesothelioma cells. They postulated that the EC50 value
(∼100 μM), roughly 40 times lower than those published for
iron ions, was due to massive Haber-Weiss reactions resulting
from the rapid uptake and intracellular transportation of nano-
particles, which is probably very different from aqueous iron
ions. In another broad-spectrum toxicity test of metal oxide
nanoparticles,52 bare SPIONs showed significant morphological
effects but only modest toxicity upon a neuroblastoma cell line.
Jeng and Swanson52 measured mitochondrial function via the
MTT assay, and at the highest concentrations tested ([Fe] ≈
2.5 mM) showed that SPIONs had a statistically significant effect
upon mitochondrial function. Au et al.53 studied the effects of
proprietary commercial SPIONs (NanoSonics (Blacksburg, VA))
upon astrocytes in vitro at a specified concentration (∼175 μM)
and also found significant effects upon mitochondrial function as
well as decreased cell viability. Similarly, Pisanic et al.54 also
developed a quantifiable model cell system and tested the effect
of a well-published anionic SPIONs formulation (coated with
dimercaptosuccinic acid) upon the various cell functions of a
pheochromocytoma neuronal-type cell line. They found that the
particles elicited a dose-dependent ([Fe] = 0.15�15 mM)
diminishing ability of the cells to either survive or demonstrate
normal biological responses and morphologies.

Table 1 presents the studies where SPION-mediated toxicity
in vitro is observed by various cytotoxicity assays. In this table,
effects of SPIONs with various physicochemical properties on
various cell lines (i.e., human and nonhuman) are fully considered.
The viability was mostly measured between 24 and 72 h. The data
are categorized according to the tissue and/or cell type used, and
in addition, all publications with the same cells are listed together.

There are multiple other in vitro studies that have demonstrated
little or no toxicity of SPIONs suspensions;55�66 many of them are
summarized in more general reviews of nanotoxicity.6,27,67�105

As mentioned before, the surface coating can have drastic
effects on nanoparticle stability, aggregate size, and finally cellular
interaction, significantly affecting the fate and extent of SPIONs
uptake in intercellular medium.106 Although Diaz et al.107 re-
ported significant toxicity and ROS production in response to
uptake of SPIONs, like Jeng and Swanson,52 the results were
strongly related to the employed cell type; more specifically, the
responses of four tested cell lines to SPIONs were significantly
different. It was also shown that the number of nanoparticles per
cell (independent of concentration) as well as the number of cells
tested might also affect the results of toxicological evaluations.
Thus, one can conclude that it may not be possible to find a direct
correlation between ROS production and cellular toxicities.
Similarly, de la Fuente et al.,108 in a study of SPIONs coated
with different saccharides, showed that even the most seemingly
minute changes in SPIONs’ coating can drastically affect cell
responses and viability.

There are several defenses mechanisms against oxidative stress
(e.g., glutathione and antioxidant enzymes) that would be activated
in mammalian cellular machinery; however, these defenses can

be overcome by the formidable oxidizing capacity of the NPs.
There are thought to be at least four primary sources of oxidative
stress in response to SPIONs including direct generation of ROS
from the surface of the NPs, production of ROS via leaching of
iron molecules from the surface degradation of SPIONs by
enzymatic degradation, altering mitochondrial and other orga-
nelle functions, and induction of cell signaling pathways together
with their consequence activation of inflammatory tells, which
results in the generation of ROS and reactive nitrogen species
(e.g., nitric oxide).109 It appears that engineered SPIONs have
exhibited the potential to induce oxidative stress via all four of
these mechanisms.110

Several studies have shown direct evidence of ROS damage by
SPIONs. For instance, van den Bos et al.47 reported a dextran-
coated SPIONs dose-dependent increase in lipid peroxidation,
whereas Stroh et al.48 measured considerable increases in both
lipid and protein oxidation, using citrate-coated SPIONs. More-
over, Alekseenko et al.111 studied the effects of uncoated SPIONs
on neuronal cells; in contrast to others, the authors investigated
the effects of ferritin, the natural iron storage protein that exists in
cells of all types and contains a 7 nm iron oxide core, surrounded
by a protein coat.112 In their work, it was found that ferritin had a
key role for direct generation of ROS in rat synaptosomes; this
could eventually lead to neurodegeneration in vivo.

Nanoparticles have been implicated to be in direct contact
with, and to produce damage within, mitochondria.113 Given this
proximity to the mitochondria, it is highly likely that the redox-
active surface of SPIONs could extensively influence electron
flow and act to alter mitochondrial functionality. Therefore, the
toxicity assays, which work based on the presence of active
reductase enzymes within the mitochondria of living cells (e.g.,
MTT, MTS, and XTT), may contain large errors. Several studies
described above utilized the MTT assay to assess mitochondrial
function; however, some authors typically assumed nonviability
in those cells exhibiting reduced reductive activity.44,51,53,71

The plasma membrane and proteins are recognized as another
potential intracellular target for SPIONs-associated toxicity. In
addition to induction of cell signaling pathways, SPIONs (both
uncoated and coated) induced redox reactions can activate and
upregulate plasma membrane proteins (e.g., nicotinamideadenine
dinucleotide phosphate oxidase114 and its analogues115), resulting in
the generation of the oxidase product. In this case, phagocytic
cells (e.g., macrophages116) can take up the SPIONs consistently
in both in vitro and in vivo environments.37,38,50,51,106,117�120

Nuclear factor-kappa B, the oxidative stress response tran-
scription factor found ubiquitously within eukaryotes,121 has also
been shown to be activated by different nanoparticles (e.g., gold)
and also results in induction of inflammatory pathways including
production of various cytokines such as various interleukins,
interferon gamma, tumor growth factor beta, and tumor
necrosis factor.122,123 There has been little direct evidence for the
induction of inflammatory pathways and cytokines by engineered
SPIONs (both uncoated and coated) in vivo and in vitro. Two
recent in vitro studies on the effect of SPIONs loading upon
macrophage function have revealed modification of cellular
behaviors as well as modulated cytokine expression. Siglienti
et al.124 observed that loading macrophages with uncoated
SPIONs resulted in enhanced interleukin-(IL)-10 production
and inhibition of tumor necrosis factor-α (TNF-α), indicating
potential immunomodulatory capabilities. Hsiao et al.125 also
studied the response of clinically used SPIONs ferucarbotran
loading upon macrophages and found that high doses/levels of
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SPIONs induced the secretion of TNF-α and resulted in produc-
tion of nitric oxide. Similarly, Naveau et al.126 showed that coated
anionic SPIONs labeling of human gingival fibroblasts resulted in
significant signs of inflammation, including increased expression
of IL-1 and -4, as well as secretion of matrix metalloproteinases.

Recently, Radu et al.127 investigated the effects of SPIONs on
lipid peroxidation and the antioxidative system in MRC-5 lung
fibroblast cells following exposure for 24, 48, or 72 h. Exposure to
α-Fe2O3 nanoparticles increased lipid peroxidation, and con-
versely, the reduced glutathione concentration decreased. In
addition, an increase of the activities of superoxide dismutase,
catalase, glutathione peroxidase, glutathione transferase, and
glutathione reductase within the interval between 48 and 72 h
was noticed. Taking into account that the reduced glutathione
level decreased and the malondialdehyde level, a lipid peroxida-
tion product, remained highly increased up to 72 h of exposure, it
would appear that the MRC-5 antioxidant defense mechanisms
did not efficiently counteract the oxidative stress induced by
exposure to hematite nanoparticles. Choi et al.128 presented in
vitro cytotoxicity of iron oxide Fe3O4 andmanganese oxideMnO
using live/dead cell assay, lactate dehydrogenase assay, and reactive
oxygen species detection with variation of the concentration of
nanoparticles, incubation time, and different human cell lines (lung
adenocarcinoma, breast cancer cells, and glioblastoma cells).

Variation of cell medium components and cytotoxicity due to
the interactions with nanoparticles were analyzed using ultravio-
let and visible spectroscopy (UV/vis) and the MTT assay
method.63,64 The toxicity has been traditionally identified by
changes in pH and composition in cells and DMEM due to the
tendency of SPIONs to adsorb proteins, vitamins, amino acids,
and ions. For in vitro toxicity assessments, a new surface passiva-
tion procedure is proposed that can yield more reliable quanti-
tative results. It is shown that a more reliable way of identifying
cytotoxicity for in vitro assessments is to use particles with
saturated surfaces via interactions with DMEM before usage.

These results show that the assays currently used for toxicity
evaluation of nanoparticles are still not well adapted for these
measurements, and many results are published based on unreliable
methods, i.e., lacking reliability and/or unrealistic test conditions,
i.e., overdose situations.22 Especially in the case of cytotoxicity,
the different tests can give very inconsistent results. The reason
for these different results is not yet understood, especially because
similar tests (MTT and MTS) lead to very different results.129

However, such models offer an inexpensive and high-throughput
alternative to in vivo research strategies. It is of utmost impor-
tance to enhance quality and reliability of in vitro studies with
nanoparticles in general.

4. IN VIVO TOXICITY OF SPIONS

The physical and chemical characteristics of SPIONs (e.g.,
surface morphology, surface charge density, coating material,
particle size, and size distribution) are considered as crucial
factors to determine pharmacokinetics, toxicity, and biodistribu-
tion of magnetic nanoparticles. Natarajan et al.130 employed
magnetic nanoparticles with diameters of 20, 30, and 100 nm and
evaluated their application for alternating magnetic field therapy
and their in vivo performance depending on their size. The nano-
particles were conjugated to 111In-DOTA-ChL6, a radio-immuno-
conjugate by carbodiimide chemistry. The radio-immuno-NPs
were purified and characterized by polyacrylamide gel electrophor-
esis (PAGE), cellulose acetate electrophoresis, live cell binding

assays, and pharmacokinetics in athymic mice bearing human
breast cancer xenografts. The radio-immuno-NPs were adminis-
tered, and blood and tissue data were evaluated at different time
points. The results showed that tumor targeting and heating
capacity depended on the size of the radio-immuno-NPs.

SPIONs are often classified as biocompatible, showing no
severe toxic effects in vivo.77,131,132 Jain et al.131 have shown that
in vivo administration of SPIONs did not cause a negative effect
in liver function. It is noteworthy to mention that the precise
prediction of the biological fate of SPIONs is strongly dependent
to the composition and amounts of associated proteins at the
surface of NPs;28 the composition and amounts of associated
proteins could be defined by exact knowledge of the physico-
chemical properties of the particles.28 For instance, a majority of
oleic acid/pluronic-coated SPIONs (i.e., 55% of the intravenous
injected dose) were accumulated in the liver of rats; however,
elimination of dextran-coated SPIONs, via urine and feces, was
around 25% of injected dosage in the same animal model.133 In
addition, another report shows the elimination of ∼20% of the
injected dextran-coated SPIONs (with different size in compar-
ison with ref 133) through urine and feces, in different animal
models.134 As predetermined, these differences in elimination of
the NPs could be explained by variation of their protein corona
compositions. Because of the physiological iron metabolism of
cells, the surface degradation of SPIONs would be processed
after their entrance to the intercellular medium, resulting in a
temporary increase in iron amounts in the serum.133 These free
iron ions have significant capability for induction of oxidative
stress;135 thus, for in vivo administration of SPIONs, injection of
high doses showed be prevented.

In addition to physicochemical properties of NPs, cell type is
also recognized as a crucial factor for cellular uptake, intracellular
fate, and toxic response of NPs. For instance, Mahmoudi et al.110

showed that SPIONs with various surface chemistries (uncoated
and cyanoethyltrimethoxysilane (CAES)- and aminopropyl-
triethoxysilane (APTES)-coated) had toxic effects on human
brain cells at iron concentrations above 2.25 mM, whereas the
same concentration of NPs were compatible with human kidney
cells (see Figure 2). Confocal microscopy (see Figure 2d)
confirms the impact of various SPIONs on different cell types.
For instance, negatively charged SPIONs did not produce
significant changes on the actin cytoskeleton of heart cells.
However, the same particles showed severe disruption of the
actin cytoskeleton in kidney and brain cells. Similar results were
observed in vivo. Hanini et al.132 tested SPIONs in vivo and could
confirm that SPIONs induced toxicity in the liver, kidneys, and
lungs; however, the brain and heart organs remained unaffected.

Chertok et al.136 explored the possibility of using SPIONs as a
drug delivery vehicle for minimally invasive, MRI-monitored
magnetic targeting of brain tumors. The in vivo effect of magnetic
targeting on the extent and selectivity of nanoparticle accumula-
tion in tumors of rats harboring orthotopic 9 L-gliosarcomas was
quantified with MRI. Animals were intravenously injected with
nanoparticles (12 mg Fe/kg) under a magnetic field density of
0 T (control) or 0.4 T (experimental) applied for 30min. Follow-
ing their results, accumulation of SPIONs in gliosarcomas can be
significantly enhanced by magnetic targeting and successfully
quantified by MR imaging with no toxicity observation. Yu
et al.137 reported that the excellent passive tumor targeting
efficiency of thermally cross-linked (TCL)-SPIONs allowed detec-
tion of tumors by MR imaging and at the same time delivery of
sufficient amounts of anticancer drugs that in turn were released
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from the nanoparticles to exhibit anticancer activity. Conse-
quently, doxorubicin@TCL-SPIONs showed exceptional anti-
tumor effects without any systemic toxicity.

After animal studies, Feridex (Endorem) was probed in humans
and recognized as safe and efficient.138 The most frequent side
effect was focused on back pain, which was detected in nine patients
(4%) and required interruption of the infusion of ferumoxides in
five of these. Although lumbar pain has been associated with
administration of a variety of colloids and emulsions, the
physiological causes are unknown, because no significant changes
in chemistry values, vital signs, and electrocardiographic findings
were found. It is worthy to note that limitations may also arise in
extrapolating from animal models to humans. There are many
physiological parameters to consider, ranging from variations in
weight, blood volume, cardiac output, and circulation time to
tumor volume/location/blood flow, complicating the extrapola-
tion of data obtained in animal models.139�141 Low toxicity of
SPIONs coated with dextran was observed by morphological
studies. Minor variations in histology of both spleen and liver
were observed at most of the highest concentrations (i.e., 200�
higher doses than that used for MR imaging).142,143

L€ubbe et al.144 observed no obvious toxicity due to the
intravenous injection of magnetic nanoparticles (i.e., with dia-
meter of 100 nm) into mice. The critical matter that would be
important in toxicity response is the concentration of ferrofluid;
therefore, due to their acute iron overload,145 high amounts of

SPIONs showed a toxic effect.146 However, the lower amount of
the same material was fully biocompatible.140 De Vries et al.147

showed that in vivo magnetic resonance tracking of magnetically
labeled cells is feasible in human for detection of very low
numbers of dendritic cells in conjunction with detailed anatomi-
cal information. Autologous dendritic cells were labeled with a
clinical superparamagnetic iron oxide formulation or 111In-oxine
and were coinjected intranodally in melanoma patients under
ultrasound guidance. In contrast to scintigraphic imaging, mag-
netic resonance imaging (MRI) allowed assessment of the
accuracy of dendritic cell delivery and of inter- and intranodal
cell migration patterns. Following their results, MRI cell tracking
using iron oxide appears clinically safe and well suited to monitor
cellular therapy in humans.

Finally, the last form of toxicity evaluation that is becom-
ing increasingly popular is computer simulation processing.148

Although this method is not routinely integrated in toxicology
assessment, it is becoming a useful technique to look at the
toxicity of drugs even before their synthesis during drug dis-
covery. Dames et al.149 showed theoretically by computer-aided
simulation, and for the first time experimentally in mice, that
targeted aerosol delivery to the lung can be achieved with aerosol
droplets comprising SPIONs in combination with a target-
directed magnetic gradient field. They suggested that nanomag-
netosols may be useful for treating localized lung disease, by
targeting foci of bacterial infection or tumor nodules.

Figure 2. Cell viability of MTT assay results for (a) SPIONs�COOH, (b) uncoated SPIONs, and (c) SPIONs�NH2 samples on heart (HCM), brain
(BE-2-C), and kidney (293T) cell lines. (d) Confocal microscopy images showing the effects of the exactly identical amount of negatively charged
SPIONs on cellular cytoskeleton as well as compartments of various cell lines (i.e., heart, brain, and kidney). Reprinted with permission from ref 110.
Copyright 2011 American Chemical Society.
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5. CONCLUSION AND OUTLOOK

For the application of nanoparticles with unique physical pro-
perties such as, for example, superparamagnetic particles, the very
high but absolutely acceptable barrier given by the regulatory
bodies has to be overcome. It has to be approved that particles are
harmless by fulfilling the conditions for a device of class III. This
demanding directive was installed because the behavior of nano-
particles in living systems is only partially known or predictable
and is far from a detailed understanding. On the other hand, a
huge and increasing number of publications exists dealing exactly
with the previously mentioned subjects. The publications are
often based on one type of particles, whereas a particle is defined
as a more or less complex system of an inorganic core particle, a
layer of, e.g., a biocompatible polymer and additionally linkers
and molecules such as proteins, peptides, drugs expressing a
biological function, or simply a fluorophore for optical detec-
tions. These particles are then tested in vitro with one or several
cell lines. Additionally, different methods are used to investigate
one or several types of toxicity, such as cytotoxicity or viability,
oxidative stress and/or genotoxicity. This short nonexhaustive
enumeration shows the very large number of possibilities to
investigate in vitro the biocompatibility of nanoparticles for
medical applications, an important and mandatory work before
final animal tests are planned and carried out. In this review, we
tried to focus our work on cytotoxicity of nanoparticles with iron
oxide as core and a biocompatible polymer as “first layer”.
Additional modifications with functional groups to control the
surface potential or further derivatization with fluorophors or
biomolecules are also incorporated into this study. However,
there is not one example of a case study that was carried out in the
past, where the same particles were investigated with the same
cell lines using the same method/protocol, which would allow
comparison and estimation of the experimental error between
different research groups.

A very severe problem lies also in the often insufficient
characterization of the tested particles and the sparse information
on coating and further surface functionalization. For nanotox-
icological investigations, Krug and Wick150 have tried to struc-
ture the investigations (transport, surface, and materials) and
have defined guidelines for the minimum information, which
needs to be provided in a relevant publication. They claim that
the scientific community cannot ensure the readers of the quality
of studies unless two major aspects are considered: nanomateri-
als that are to be tested must be sufficiently characterized
beforehand and enough information on validity and suitability
of the selected test methods must be provided. An additional
aspect that was mentioned is the fact that mostly negative effects
of nanoparticles were reported and therefore often the employed
nanoparticles’ doses are too high. To investigate potential
applications of nanoparticles, these rules have to be applied but
additional information regarding dose, concentration, solvent,
application method, and rate are necessary. Our review shows
that very few publications fulfill all these conditions. For example,
dose and concentration should be mentioned, e.g., per volume or
per cell, to allow comparison with other experiments and/or
research groups. Additionally, each type of test requires different
particle concentrations to address very specific questions. For
example, genotoxicity is assayed with much smaller doses that are
not cytotoxic to avoid DNA damage by other mechanism (see
also manuscript by Krug andWick).22 Finally, interference of the
nanoparticles with the test system itself should be taken into

account in any case, and measurements have to be taken if such
an interaction takes place.

The further development in the field of inorganic core/organic
shell nanoparticles for medical applications will depend in an
important way on a deeper understanding of the nanoparticle/
protein interaction. The interaction between a nanoparticle and
the cell membrane is mainly controlled by the adsorbed protein
at the nanoparticle. The type of protein, the amount, and also
conformation depends, on the other hand, strongly on the
prepared nanoparticle surface properties, such as diameter,
charge, functional groups, and derivatized biomolecules. Addi-
tionally, the colloidal behavior, agglomeration rate, and stability
have to be taken into account. We believe, therefore, that
oversimplified models are not helpful for the estimation of the
behavior of the particles in vitro and especially in vivo. This
fundamental challenge in understanding the behavior of nano-
particles in complex biological fluids exists also in the field of
toxicology of engineered nanoparticles, with the latter being even
more complicated because very often the surface composition is
not known in detail and the uptake by humans or animals is much
less controlled. As discussed in several conferences, amuch closer
cooperation between the experts has to be encouraged in the
future to shorten the time to develop regulations and to bring safe
nanoparticles to the market.
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